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Specular object detection using combination of
image and motion cues
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Abstract. Identification and localization of shiny objects is an impor-
tant task for a vision system in order to extract the semantic content of
the images, and effective interaction with the environment. Previously,
an algorithm was proposed that exploits motion cues in videos for shiny
object detection and localization. In this paper we are extending the
algorithm by fusing motion and static image cues which dramatically
improves detection performance. Motion cues are related with epipolar
deviations and appearance distortions due to specularity, while image
cues are extracted via sliding window based object classification. We test
the effectiveness of the proposed algorithm on various object shapes, ob-
ject sizes, surface properties and noise/blur conditions. The proposed
algorithm provides a complete solution to specular object detection, suc-
cessfully localizing shiny objects in a wide variety of conditions.

Keywords: Specularity detection, Image motion, Object classification,
Surface reflectance estimation

1 Introduction

One of the fundamental problems in computer vision is surface reflectance es-
timation. Surface reflectance is a prerequisite for the successful recovery of 3D
shape [1–3], and it also provides crucial information about the semantic iden-
tity of objects (Figure 1). For an artificial agent visual extraction of reflectance
properties may be a crucial prerequisite for properly planning interactions with
the environment, for example in the biomedical context [4], or in real-time , real
world 3D reconstruction scenarios [5].

The object’s reflectance properties, its 3D shape and the illumination have
to be estimated simultaneously from the 2D patterns of light arriving at the
sensor therefore visual estimation of surface reflectance properties is mathemat-
ically under-constrained. Specific assumptions about the spectral BRDF [6,7] or
knowledge of camera motion [8, 9] has been made under specific conditions in
the majority of previous work on reflectance classification, such as specialized
sensing or lighting [10].

Image motion has been beneficial in many computer vision problems: struc-
ture from motion, image stitching, 3D shape recovery, stereo correspondence,
recognition, or pose estimation, and has recently received increasing attention
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Fig. 1. Surface reflectance, appearance and identity. The shape in these three pho-
tographs is the same but the identity of the object changes as a function of its surface
reflectance characteristics. Semantic labeling would be impossible on the basis of shape
alone. From left to right: pingpong ball, chrome ball bearing, black plastic sphere. To
optimally interact with these objects, e.g. to pick them up without breaking or dropping
them, visual estimation of surface reflectance is crucial

in 3D specular shape reconstruction [11], specularity detection [12, 13], and re-
flectance classification [14].

The evidence in [15] suggests that one particular powerful image motion
cue that the human visual system seems to be sensitive to when estimating
surface reflectance is the distortion of appearance, that moving specular surfaces
give rise to [14,15]. Appearance distortion is an attractive motion feature to be
extracted by a specularity detecting algorithm because it does not require any
assumptions about the object, the illumination or the camera trajectory, it can
be computed from just two images of a motion sequence, and it is a robust
feature: it consistently occurs on specular surfaces, regardless of object shape,
motion, or the reflected environment.

Another motion cue for specularity detection is epipolar deviation. For rigid,
diffusely reflecting objects the optic flow due to camera motion obeys epipo-
lar geometry. [12] showed that motion of specular object violates the epipolar
constraint. While these epipolar deviations may signal the existence of specular-
ities [12, 13], their usefulness in specular object detection is restricted to linear
camera motion and convex shapes. Moreover, problems may arise - due to the
global nature of this cue (at the fundamental matrix estimation stage, motion
vectors from the entire image contribute to computation) - that diminish its
specificity. For example, moving matte, textured objects will distort the optic
flow field solely due to camera motion, and would thus cause epipolar devia-
tions. Moreover, slowly moving, near planar, specular objects will have negligible
epipolar deviations, and may thus not be identified as specular [14]).

An algorithm developed in [15] relies on scale and rotation invariant feature
extraction techniques and uses the two motion cues (appearance distortion and
epipolar deviation) to detect and localize specular surfaces in both computer-
rendered and real image sequences. Change in feature vectors due to appearance
change is used to quantify the appearance distortion on specular surfaces. The
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Fig. 2. Sample Scene. The camera motion is a rotation in azimuth, a single specular
object is located on the desk. (Best viewed in color).
(a) A sample frame from the image sequences we used in our experiments. The purple
color indicates epipolar deviation cue based detections
(b) The specular object is shown in close shot and the purple color indicates appear-
ance distortion.
(c) Epipolar deviation (outlier) field shown separately.
(d) Appearance distortion field shown separately.
(e) Specular classification field obtained by sliding window based specular object search.
(f) The combined specularity field. Inset figure in b illustrates that appearance distor-
tion, and therefore or algorithm also detects concave specular regions.

algorithm combined appearance distortion cue and epipolar deviations [12]. Even
though combination of the two motion cues successfully detects shiny objects in
videos, the algorithms have its shortcomings: the two motion cues are unable to
detect low curvature shiny objects or objects with low reflectance. In this paper
we are combining motion cues with image cues (Figure 2), and the proposed
algorithm is performing dramatically better than motion-only algorithm in [15],
not only in low curvature or reflectance conditions but in all scenarios. We are
reporting five-fold improvement in detection precision, for failed scenarios in [14]
and [15]. Image based specularity detection utilizes local binary pattern based
feature extraction and linear SVM classifier for sliding windows based detection.
Overall, we are providing a complete specularity detection system which works
in a wide variety of object shapes and surface properties.

The paper is organized as follows: in section 2 we introduce the algorithm for
detection and localization of specularities in image sequences. Section 3 describes
the test sets and in section 4 we present the experimental results for various
camera motions, camera speeds, object sizes, object shapes, surface reflectance
properties in computer- generated scenes, as well as for videos. We end with a
brief discussion in section 5.
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Fig. 3. The algorithmic flow of specular object detection. It has two main branches:
Image and Motion analysis. Image analysis outputs specular class field. Motion analysis
relies on two separate pathways: outlier and appearance distortion fields. The three
fields are combined to obtain the specularity field.

2 Algorithm

The specular region detection algorithm that we propose takes a pair of images
(current and previous) and outputs a specularity map in the current image (Fig-
ure 2 and Figure 3). The algorithm has two distinct stages: Image and Motion
Analysis. In Motion Analysis we use SIFT features [16, 17]. They not only pro-
vide scale and rotation invariance in image analysis but also feature vectors that
quantify local appearance. This makes them a perfect tool to directly capture
the appearance distortions that occur on specular surfaces. In Image Analysis
we train a classifier that separates specular objects from non-specular objects.
At the end we combine three cues for obtaining specularity field of the image
(see Figure 2). We give the details of the three cues in the following subsections
(used parameters are given in the Appendix).

2.1 Epipolar Deviations

For computing epiploar deviations we utilize SIFT feature matching of consecu-
tive frames in the video, then use fundamental matrix estimation to discriminate
outlier matching. The flow is given as follows:

1. Extract SIFT features for each frame.
2. Eliminate features with low average feature vectors (Appendix)
3. SIFT nearest neighbour feature matching [18].
4. Apply 2000 RANSAC [19] iterations with 8 point DLT fundamental matrix

estimation [20] to matching features.
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5. Accept features with Sampson error [21] more than a selected threshold as
outliers (Appendix).

6. Initializing a zero magnitude field (same size as the image).
7. Assign high intensity (value 1) to outlier pixels and convolve with Gaussian

kernel (Appendix).

This field quantifies the density of epipolar deviations in the image. See
Figure 2.

2.2 Appearance Distortion

For computing appearance distortion we also use SIFT features. The feature
vector is a robust representation of the local appearance on objects. We measure
the change in matching feature vectors to quantify appearance distortion. The
flow is given as follows:

1. Compute L1 norm of the change in matching feature vectors for consecu-
tive frames (inliers only). L1 norm is chosen over L2 norm, for its relative
sensitivity to smaller distances.

2. Initializing a zero magnitude field (same size as the image).
3. Assign appearance distortion values (difference in matching vectors) to inlier

pixel locations and convolve with the same Gaussian kernel as in section 2.1.

The resulting field quantifies the appearance distortion in the image (see
Figure 2). Note that, appearance changes for outlier features are not used in
order to avoid false high appearance distortion values. The latter arise from
errors in feature matching.

2.3 Sliding Window Based Classification

In order to detect specular regions in images, we need to train a classifier and
a sliding window based search procedure. We used Flicker Material Database
(FMD) [22] as our source of specular/non-specular images. (Detailed information
about FMD dataset is given in our supplementary document.) We reshaped the
size of all images to 512 by 384 pixels, and then extracted local binary pattern
(LBP) features [23, 24]; (58 quantized implementation of Vedaldi [17]). The cell
size of the LBP was 128 pixels. The LBP features of the images were used for
training multi class linear SVM classifier with L1 norm.

It should be noted that a relatively small (100 images per class, total of 10
classes) and a completely independent dataset was used for training the specular
classifier. We selected glass subset of the FMD dataset as specular class and the
rest of the images as non-specular class. During test time, images were searched
for specular image blocks (specifically images that are classified as glass according
to FMD) using sliding windows of size 64 by 48 pixels, and a skip size of 5 pixels.
Centre pixel of the sliding window represents a detected specular object. We
initialized a specular classification field with zero values, assigned a weight value
to specular pixels and convolve with Gaussian kernel (Appendix).
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2.4 Combination of Cues

The specularity field is obtained through pixel by pixel multiplication of the
epipolar deviation, appearance distortion and specular class fields (see Figure 2
and 4). Multiplication of three fields acts as an AND operation, but it is more
quantitative and flexible since a threshold can be defined on the combined field.
This field has high intensity only if both epipolar deviations, appearance distor-
tion exists and also the probability that class label of the pixel being specular
is high. The combined field is thresholded to declare the final detected specular
pixels.

2.5 Performance evaluation

We used precision and recall metrics for evaluating the detection performance of
our system. We first determined the intersection of the detected specular pixels
with the area delimited by the ground truth bounding box. Precision is the ratio
of the number of intersection pixels to the number of detected specular pixels.
Recall is the ratio of the number of intersection pixels to the number of ground
truth specular pixels. Precision is equal to one if the detected specular pixels are
completely inside the ground truth bounding box. It should be as large as possible
in order not to declare false specular pixels. If recall is larger than a satisfactory
threshold (eg.0.2), then enough number of specular pixels is retrieved to declare
specularity detection. Additionally the system needs to avoid false detection,
hence give a satisfactory precision. For this purpose, we will primarily use average
precision to evaluate the performance of the algorithm. In the experiments we
will report the average precision in the Precision-Recall curve, for the cases
when Recall is larger than 0.2. Please note that, the experimental findings are
not sensitive to the choice of recall threshold (See supplementary material for
more results).

3 Test Set

We used the same dataset in [15] in order to demonstrate the effect of cue com-
bination. For the details of the dataset generation, readers are invited to read
section 4 of the paper. The dataset consists of carefully designed rendered video
sequences that cover various object shapes, camera motion, object reflectance
property, noise and blur levels; as well as real video sequences. The explana-
tion of the dataset images are given in the experiments section. Matlab code of
experiments are available at our website (Anonymous_due_to_blind_review).

4 Experimental Results

4.1 Effect of Frame Integration

Integration is one of the main methods in a wide spectrum of scientific fields, to
improve signal to noise ratio. In the context of video based detections, collect-
ing the result for multiple frames and combining them is a primitive and fast

Anonymous_due_to_blind_review
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Fig. 4. The effect of frame integration is demonstrated for three types of cues (Image,
Motion and Image+Motion). Precision recall curves are given for two conditions. Blue
curve is individual frame based detection and red curve is frame integration based
detection. Only image cue is used (left), only motion cue is used (middle) or motion
and image cues are combined (right).

Table 1. The effect of object size and type of camera motion on average detection
precision is given. (L-Large; R-Rotation; Z-Zoom; S-Small; T-Translation)

(Object Size, Camera Motion) Image Cue Motion Cue Image + Motion Cue

(L, R) 0.20 0.76 0.96

(L, T) 0.13 0.77 0.87

(L, Z) 0.10 0.66 0.89

(S, R) 0.18 0.80 0.96

(S, T) 0.05 0.75 0.87

(S, Z) 0.07 0.67 0.87

kind of frame integration. We adopted this approach to improve the precision
of specular object detection. For this purpose, we added the specularity fields of
consecutive frames (10) and applied thresholding to the integrated frame instead
of individual frames (integrated the last 9 frames with the current). In Figure 4,
we show that integration significantly improves precision of detection, for both
image (left) and motion (middle) cues as well as the combined cues (right). The
rest of the experimental results reported in the paper uses frame integration.

4.2 Combination of Motion and Image Cues

As previously explained, motion cues have shortcomings in detecting spherical
surfaces or surfaces with low reflectance [15]. In this paper, we introduce clas-
sification based image cue to support motion cues discovered in [15]. Figure 5
reports the performance of motion and motion+image cues for three different
conditions. Although image cue is inferior in performance compared to motion
cue, when the two cues are combined, the detector becomes dramatically bet-
ter. This observation implies that motion and image cues collect complementary
information.
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Fig. 5. The effect of image motion cue integration is demonstrated for various videos,
previously reported to be problematic for motion cue based detection. Precision-Recall
curves are given for Sphere shaped object (Left), Low reflectance high glossy surface
(Middle) and real video sequence. In all three cases image and motion cue combination
signficantly improves detection performance compared to motion cue alone.

Fig. 6. Low curvature objects previously reported to be problematic for motion cue
based detection are shown. Sphere and ellipsoid has very smooth surface. The smooth-
ness of a cuboid edge is controlled by chamfer parameter (larger the smoother).

We also examined average detection precision for various object size and
camera motion scenarios (Table 1). There is no significant effect of size and
camera motion types for our experiments, however these set of experiments also
verify the fact that image and motion cue combination is extremely beneficial
for detection, for various size and motion scenarios.

4.3 Object Shape

Motion cue was shown to be unable to detect specularities on spherical objects,
or objects with smoother undulations (see Figure 6) [15]. We tested detection
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Table 2. The effect of object shape on average detection precision is given.

Shape Image Cue Motion Cue Image + Motion Cue

Sphere 0.07 0.12 0.60

Ellipsoid 0.07 0.11 0.33

Chamfer 20% 0.05 0.28 0.60

Chamfer 30% 0.07 0.31 0.63

Chamfer 40% 0.09 0.30 0.87

performance for a set of simple objects that varied in their surface curvature:
a sphere, ellipsoid and three different chamfer boxes with different curvatures
(Figure 6).

We show in Table 2 that, combination of image and motion cues shows the
most impressive improvements in detection, with 5 fold increase in precision
for sphere object. Again, the image cue provides a very poor detector, yet it
dramatically aids the motion cue to give a much superior performance.

4.4 Reflectance Properties

Similar to object shape, studies in [15] reported a poor performance for objects
with low reflectance surface (Figure 7). The cue combination is a remedy to
that problem as we report significant improvements in Table 3. In this table
we report average precision for various reflectance and glossiness conditions rep-
resented by (Reflectance,Glossiness) duplet. It is observed that combination of
cues enhances detection performance for every combination of surface proper-
ties. The highest improvement, 4-fold increase in average precision, is observed
for the worst glossiness condition, (1, 0.5).

Table 3. The effect of reflectance and glossiness on average detection precision is given.

(Reflectance, Glossiness) Image Cue Motion Cue Image + Motion Cue

(1, 1) 0.2 0.76 0.96

(1, 0.75) 0.03 0.77 0.81

(1, 0.5) 0.13 0.22 0.80

(0.75, 1) 0.07 0.77 0.93

(0.75, 0.75) 0.04 0.59 0.85

(0.5, 1) 0.18 0.64 0.90

(0.25, 1) 0.1 0.26 0.78

(0.25, 0.75) 0.05 0.15 0.43
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Fig. 7. The effect of varying reflection intensity and blur on specularity is illustrated.
Previous motion based alglorithm was reported to give poor detection performance for
low reflection intensity and high blur conditions. The algorithm is tested on all the
objects to evaluate the sensitivity to surface properties.

Fig. 8. The effect of noise and blur on specular object is demonstrated for various noise
and blur levels is given.



450

451

452

453

454

455

456

457

458

459

460

461

462

463

464

465

466

467

468

469

470

471

472

473

474

475

476

477

478

479

480

481

482

483

484

485

486

487

488

489

490

491

492

493

494

450

451

452

453

454

455

456

457

458

459

460

461

462

463

464

465

466

467

468

469

470

471

472

473

474

475

476

477

478

479

480

481

482

483

484

485

486

487

488

489

490

491

492

493

494

ECCV

#690
ECCV

#690

ECCV-16 submission ID 690 11

Table 4. The effect of noise and blur on average detection precision is given.

(Noise, Blur) Image Cue Motion Cue Image + Motion Cue

(0, 8) 0.04 0.91 0.84

(0, 16) 0.03 0.83 0.85

(0, 32) 0.02 0.86 0.74

(7, 0) 0.12 0.82 0.86

(7, 8) 0.04 0.90 0.88

(7, 16) 0.04 0.82 0.89

(7, 32) 0.03 0.89 0.81

(14, 0) 0.07 0.87 0.87

(14, 8) 0.03 0.92 0.78

(14, 16) 0.04 0.86 0.87

(14, 32) 0.03 0.85 0.83

(29, 0) 0.05 0.91 0.90

(29, 8) 0.02 0.93 0.89

(29, 16) 0.03 0.88 0.84

(29, 32) 0.03 0.81 0.71

Table 5. The performance of the detectors on real video sequence is given.

Image Cue Motion Cue Image + Motion Cue

0.13 0.39 0.75

4.5 Noise and Blur

We examined the effect of image noise and blur (Figure 8) on detection per-
formance. We introduced additive Gaussian noise ( σ , 0–29) and motion blur
(length, 0–32 pixels) to our image sequences, varying noise power and motion
blur length (Figure 8). Noise was added to the image before applying motion
blur. This is a harder case than the opposite sequence since it creates structured
noise in the image.

The results are reported in Table 4, in which we show that the detection
system is capable of specularity detection for very wild scenarios of noise and
blur. Yet, for some cases, cue combination slightly decreases the performance
due to the fact that image cue is much more sensitive to noise and blur than
epipolar deviation cue.

4.6 Real Video Sequence

For real-world experiments we used the sequences in [15]. The algorithm had
to find this object in a real-world scene Office. Note, that this movie was taken
under everyday conditions (handheld camera, accidental trajectories, etc.), thus
should constitute a hardest-case test scenario (Figure 9). To make our tests
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highly stringent we left the parameters of the algorithm unchanged 1, i.e., they
were optimized for performance in computer-rendered scenes. We report in Table
5 that the combination of cues significantly improves detection performance for
real video sequences. Thus the proposed algorithm is proven to be useful for real
videos as well as rendered videos.

5 Discussion

Surface reflectance is a major factor contributing to an object’s appearance,
and estimation of surface reflectance is a fundamental problem in computer vi-
sion. Recently, image motion has been shown to provide useful information for
reflectance classification [14] and specularity detection [12, 13]. [15] proposed a
robust algorithm for specularity detection in videos, using a set of motion cues.
Here, we developed a novel algorithm for the detection and localization of spec-
ular objects using image motion, that combines motion cues with classification
based image cues.

Image based detection was achieved by training a specular object classifier
on a publicly available material image dataset (FMD), and performing a sliding
window based search over the test images for specularities. The training dataset
is quite small (100 images per class and only glass class is used to detect specular
objects), yet the trained classifier performs surprisingly well. More importantly,
the image based detection aids the motion cue dramatically and together the
two cues build a very robust and successful detector.

We tested the algorithm under a wide range of conditions. Cue combination is
shown to be extremely beneficial for detection, and image cue is complementary
to motion cue. Motion cue measure how the specular surface appearance abruptly
with motion and how it does not obey 3D motion of the frame, whereas the image
cue captures the general appearance of the specular surfaces in static images.
Hence they are complementary in nature due to the added dimension of time in
motion cue.

Performance was excellent for all types of camera trajectories (translation,
zoom, rotation). The results on very different object variations, noise, blur etc.
showed the generalization power of the algorithm.

The proposed algorithm provides a complete solution to specular object de-
tection, successfully localizing shiny objects in a wide variety of conditions. Yet,
there is still room for improvement, possibly using a larger dataset for classifier
training, a better feature extraction routine, and using a more capable classifi-
cation algorithm.

It is observed that the proposed algorithm performs poorly when the amount
of noise and motion blur increases. This is due to the fact that image based
specularity detection is impaired significantly with noise and blur.

1 There were 3 real video sequences in [15] but 2 of them were not appropriate due to
frame integration. In order to test on them, the algorithm should be modified, and
we prefer not to do that due to consistency



540

541

542

543

544

545

546

547

548

549

550

551

552

553

554

555

556

557

558

559

560

561

562

563

564

565

566

567

568

569

570

571

572

573

574

575

576

577

578

579

580

581

582

583

584

540

541

542

543

544

545

546

547

548

549

550

551

552

553

554

555

556

557

558

559

560

561

562

563

564

565

566

567

568

569

570

571

572

573

574

575

576

577

578

579

580

581

582

583

584

ECCV

#690
ECCV

#690

ECCV-16 submission ID 690 13

Even though the main focus of our study is not developing an image based
specularity detection algorithm, as a future work we would like to compare our
image based detection algorithm with existing methods [25]2. Specularity de-
tection functionality can be imported to robotic vision applications for slippery
surface detection, rendering of 3D reconstructed specular surfaces or to produc-
tion line vision applications for detecting shiny metal objects.

Fig. 9. The first frame of the Real Video Sequence.

2 The details in [25] is not enough to implement the algorithm, yet we will attack the
problem for comparison.
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A Parameters

– SIFT peak threshold = 3
– SIFT edge threshold = 10
– SIFT feature elimination threshold = 5
– SIFT matching threshold = 2
– RANSAC iteration = 2,000
– Sampson error = 0.02
– Convolution kernel size = 60
– Convolution kernel, Gaussian standard deviation = 30
– Sliding window size = [64 48]
– Sliding window skip pixel = 5
– Specular classification weight = 0.001
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